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Abstract 

We describe the further development of phase 
refinement by iterative skeletonization (PRISM), a 
recently introduced phase-refinement strategy 
[Wilson & Agard (1993). Acta Cryst. A49, 97-104] 
which makes use of the information that proteins 
consist of connected linear chains of atoms. An 
initial electron-density map is generated with inac- 
curate phases derived from a partial structure or 
from isomorphous replacement. A linear connected 
skeleton is then constructed from the map using a 
modified version of Greer's algorithm [Greer (1985). 
Methods Enzymol. 115, 206-226] and a new map is 
created from the skeleton. This 'skeletonized' map is 
Fourier transformed to obtained new phases, which 
are combined with any starting-phase information 
and the experimental structure-factor amplitudes t o  
produce a new map. The procedure is iterated until 
convergence is reached. In this paper significant 
improvements to the method are described as is a 
challenging molecular-replacement test case in which 
initial phases are calculated from a model containing 
only one third of the atoms of the intact protein. 
Application of the skeletonization procedure yields 
an easily interpretable map. In contrast, application 
of solvent flattening does not significantly improve 
the starting map. The iterative skeletonization pro- 
cedure performs well in the presence of random noise 
and missing data, but requires Fourier data to at 
least 3.0 A,. The constraints of linearity and con- 
nectedness prove strong enough to restore not only 
missing phase information, but also missing ampli- 
tudes. This enables the use of a powerful statistical 
test, analogous to the 'free R factor' of conventional 
refinement [Brfinger (1992). Nature (London), 355, 
472-474], for optimizing the performance of the 
skeletonization procedure. In the accompanying 
paper, we describe the application of the method to 
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the solution of the structure of the protease inhibitor 
ecotin bound to trypsin and to a single isomorphous 
replacement problem. 

Introduction 

The crystallographic phase problem remains an 
impediment to the rapid solution of three- 
dimensional macromolecular structures. Unfortu- 
nately, there is insufficient information in the 
structure-factor amplitudes alone to determine 
directly high-resolution phases (for a recent discus- 
sion, see Baker, Krukowski & Agard, 1993). Thus, 
much effort has been directed at practical methods of 
phase improvement. At different stages in the solu- 
tion of a molecular structure from diffraction data, 
varying amounts of physical and chemical informa- 
tion can be utilized to improve the phases. Classical 
direct methods, which have been used to solve count- 
less small-molecule structures ab initio, make use 
only of positivity and atomicity. Solvent flattening 
(Wang, 1985), widely used to improve electron- 
density maps of macromolecules generated using 
experimental phase information, makes use only of 
the information that solvent regions in protein crys- 
tals are relatively featureless and that the electron 
density is positive. The full power of chemical knowl- 
edge can only be brought into play after an atomic 
model has been traced through the density. Then, the 
large store of a priori information pertaining to 
molecular geometry (bond lengths, bond angles and 
non-bonded interaction energies) can be used to 
reduce greatly the number of free parameters. 

There is a considerable gap between employing 
solvent flattening and full stereochemical refinement. 
The information that proteins are composed of linear 
connected strings of atoms lies somewhere between 
the knowledge that solvent regions are featureless 
and the detailed rules of stereochemistry; it is more 
stringent than the former but does not require the 
atomic model implicit in the latter. 

A previous report (Wilson & Agard, 1993) 
described a refinement method which exploits the 
information that proteins are connected linear chains 
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through iterative skeletonization of the electron 
density [an alternate implementation of these con- 
straints is described in Bhat & Blow (1982)]. A linear 
connected skeleton was generated from an input map 
in two steps. First, a list of nodes corresponding to 
local maxima along the x, y, or z axes in the map, 
and a list of connections between the nodes, were 
generated using routines in the GRINCH (Williams, 
1982) package. Second, new nodes were added to 
link isolated sets of mutually connected nodes to 
create a completely connected skeleton. Structure 
factors were then calculated from the skeleton using 
a carbon-scattering curve for each node. A new 
electron-density map was calculated using the new 
phases and Sim-weighted Fourier coefficients, and 
the skeletonization procedure was repeated. The 
radius of convergence of this iterative skeletonization 
procedure was dramatically larger than that of sol- 
vent flattening for a variety of simple molecular- 
replacement test cases. 

Here we describe the further development of this 
phase-refinement strategy. Significantly more accur- 
ate methods are used to skeletonize the input 
electron-density map and to obtain structure factors 
from the skeleton. The connectivity of the chain is 
preserved throughout the skeletonization procedure, 
thus eliminating the problem of reconnecting dis- 
jointed graphs, which grows exponentially with the 
number of nodes. In this paper the new method is 
described in detail and is applied to a challenging 
molecular-replacement test case. In the accompany- 
ing paper, we describe the application of the method 
to the solution of a new protein structure and to the 
improvement of phases in an otherwise intractable 
single isomorphous replacement (SIR) problem. 

Methods 

All calculations were done on a VAX/VMS 9000 or a 
VAX/VMS 8650 computer. Programs used in this 
study originated either from the CCP4 package 
of crystallographic programs (FFT, GENSFC, 
SFC, LCFUTILS, COMBINE, ENVELOPE, 
HKLWEIGHT, TRUNCMAP) (SERC Daresbury 
Laboratory, 1986) or were written by the authors 
(SKELETON, SIMWT, MAPCORREL, MAKENV, 
LCFSCALE, PURGELCF, FREE). The latter pro- 
grams were written in C or Fortran and are available 
upon request. Minor modifications were made in the 
CCP4 programs TRUNCMAP and ENVELOPE to 
facilitate interactions with the other routines. Maps 
and structure-factor data sets were expressed in 
standard CCP 'MAP'  and 'LCF'  formats, respec- 
tively. Coordinates of models and of skeletons were 
stored in standard Protein Data Bank (PDB; 
Bernstein et al., 1977) format. The programs 
FRODO (Jones, 1985) and INSIGHTII (Biosym 

Technologies, 1991) were used on either an Evans 
and Sutherland PS390 or a Silicon Graphics Iris 
4D/25 to visualize results. Simple conversion pro- 
grams (available from the authors) were used to put 
skeletons or maps into formats compatible with these 
modeling programs. 

The flowchart in Fig. 1 describes the cycle of 
programs employed in the PRISM method. An 
initial map, which may not be interpretable, is skele- 
tonized and a new map is output. Structure factors 
are calculated from the skeletonized map and are 
then scaled to observed amplitudes. For isomor- 
phous replacement problems, phases from the skele- 
tonized map are combined with experimental 
phase-probability distributions. For molecular- 
replacement problems, Fourier coefficients 2wFo - F~ 
(Main, 1979) for acentric reflections and wFo for 
centrics are calculated where 'w' is the Sim weight 
(Sim, 1960). A new map is generated using these 
Fourier coefficients and input into the next cycle. 
Solvent flattening with or without non-crystal- 
lographic symmetry averaging can be included in the 
cycle as indicated in the figure. 

: 
I enve 1 ~ I ~ 

' , : .~ :~ i°~ l  I ~ c  
I routines I ~ 1 LCFSCALE I 

~ l e d  1 

' - t  C°MB~E1 I S~MWT ~ 

statistical 
• output 

L . . . . . . . .  I 

Fig. 1. Flowchart of the cycle of programs employed in the 
PRISM method. 
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Descriptions of the individual programs 

SKELETON employs a modified version of Greer's 
algorithm (Greer, 1985) to reduce an electron-density 
map to a set of connected grid points, or 'nodes'. 
Based on these nodes, a 'skeletonized' map is then 
generated with the density falling off smoothly with 
distance from the skeleton. 

An electron-density map is read in, and all grid 
points above a user-defined minimum density 
(minden) are stored as 'nodes' together with a list of 
nearest neighbors. Nodes at the six grid points (x + 1, 
y, z), (x, y_+ 1, z) and (x, y, z +_ 1) are considered 
nearest neighbors of a node at (x, y, z). Two nodes 
are considered to be connected if there is a con- 
tinuous path of nearest neighbors between them. A 
'graph' is a set of mutually connected nodes. A 
'cut-point' is a node the removal of which dis- 
connects a graph. An 'end-point' is a node with a 
single neighbor. 

Nodes are then removed, starting from the lowest 
density, unless they are either cut-points, or are 
end-points and have a density greater than a user- 
defined value (epden). Once a user-defined maximum 
density (maxden) is reached, no further nodes are 
removed. Graphs containing less than a certain user- 
defined number of nodes (mingraph) are then 
removed. Because the nodes are more closely spaced 
than atoms along a peptide chain, a single overall 
thermal B factor is insufficient to shape properly the 
electron-density distribution. To accomplish this, a 
new map is generated from the selected set of nodes 
using the formula p = exp[-  (~2/fl)r2] where r is the 
distance from the nearest node and/3 is user-defined 
and acts much like an anisotropic B factor. Instead 
of using a uniform peak height for the skeleton, 
using the original electron densities at the node 
points as weighting factors was examined, but did 
not improve the performance of the method. 
Throughout the paper, the removal of nodes not 
required for the connectivity of the chain is referred 
to as thinning, and the removal of small discon- 
nected graphs, as pruning. 

As the skeleton, and hence the highest peaks in the 
skeletonized map, are restricted to grid points, 
optimal results are obtained when the input map is 
calculated on a finely sampled grid. The experiments 
described here utilized a grid spacing of ) the resolu- 
tion limit unless otherwise indicated. 

LCFSCALE scales calculated amplitudes (Fca~c) to 
observed amplitudes (Fobs) and calculates Sim 
weights. Zonal scaling was used for all of the work 
described here. In molecular-replacement cases where 
the scattering density in a portion of the asymmetric 
unit was known, input maps were calculated with 
Fooo equal to zero, and a mask was used to zero the 
known portion prior to density modification. The 

transform (Fk . . . .  ) of the masked portion of the map 
(usually structure factors from a molecular- 
replacement model) was then combined through 
vector addition with the transform (Fsk~l) of the 
skeletonized portion of the map to give the output 
F c a l c ' S  

Fca l c  : a l Fk  . . . .  "+- a2 Fske,, 

where the scale factors, a~ and a2, were obtained for 
each resolution zone by minimizing Y(Fobs 2 -  
lalFknow,,+a2Fskel,2) 2. Performing the scaling in 
reciprocal space rather than real space has the 
advantage that the intrinsic differences between a 
skeleton and an atomic model can be partially com- 
pensated for by resolution-dependent scale factors. 

M A P C O R R E L  performs real-space non-crystallo- 
graphic symmetry averaging for grid points within 
an envelope. A molecular envelope can be created 
either using the filtering approach of Wang (Wang, 
1985) or from the skeleton coordinates using 
MAKENV.  When there is non-crystallographic sym- 
metry (NCS), related grid points within the envelope 
are averaged and grid points outside the envelope are 
set to their mean value. In the absence of an input 
NCS operator, the program reads a solvent envelope, 
flattens the solvent region and optionally truncates 
negative density in the protein region. 

A single 'master' VMS command language file is 
available from the authors which runs the entire 
PRISM package, performing any combination of 
NCS averaging, solvent flattening and skeletoniza- 
tion. Fig. 1 shows the programs included in the 
package and the order in which they run. The input 
to the command file is a text file containing keywords 
and values defining the run. 

Results and discussion 

The phase-refinement strategy is described in Fig. 1. 
As in traditional density-modification methods, an 
input map is modified by the application of con- 
straints, in this case connectivity and linearity, and 
new structure factors are calculated from the 
modified map. The new phases are then combined 
with the experimental amplitudes and a new map is 
generated. The process is repeated until convergence 
is reached. The radius of convergence of such a 
method is determined by the power of the applied 
constraints. The accuracy is limited by the errors 
which necessarily accompany the enforcement of the 
constraints. 

Accuracy of skeletonization 

To test the fidelity of skeletonization, a perfect map 
was subjected to multiple rounds of the iterative 
skeletonization procedure. Structure factors and a 
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perfect starting map were generated from the coordi- 
nates (1LPE) of apolipoprotein E (Wilson, Wardell, 
Weisgraber, Mahley & Agard, 1991). The map was 
then subjected to the iterative skeletonization pro- 
cedure, using the amplitudes calculated from the 
coordinates as the Fobs. The weighted phase error, 

~'.Fobslac,4c- atruel/ZFobs, 

at each cycle is shown in Fig. 2 (triangles). The phase 
error rapidly increased from 0 to 12 ° and then 
leveled out at about 18 °. A similar test of the earlier 
skeletonization procedure gave a final phase error of 

5 0 - -  

$ 

30 

.E - 

~ 2 0 _ _  

0 , I 1 , 
0 9 18 27 

Cycle 

Fig. 2. Progress of  phase refinement. Structure factors (Fob.,, a,,,c) 
and a 'perfect'  electron-density map were calculated at 2.5 A 
resolution from the coordinates o f  apolipoprotein E ( ILPE)  
translated into a PI unit cell with a = 28, b = 34 and c = 66 A. 
As illustrated in the accompanying paper, the procedure is 
space-group general; space group PI was chosen for the test 
case to simplify visualization of  the skeletons and maps. The 
iterative skeletonization procedure was then applied to the 
perfect starting map. The grid spacing was 0.67 A. The values 
for the parameters minden, epden, maxden,  /3 and mingraph 
were 1.2, 2.0, 2.5, 6.0 and 15, respectively. At each cycle a new 
map was calculated using Fourier  coefficients (2wF,- 
F,.)exp(iaca,c) where the ac,,c are phases calculated from the 
skeletonized map generated in the previous cycle. The weighted 
phase difference (acaj¢ - a .... ) is shown in the figure (line with 
triangles). In a second experiment, structure factors (F~ak., a~,j~) 
were generated from a molecular-replacement model lacking 
residues 39-59 and 107-144 and side-chain atoms beyond C °. 
The iterative skeletonization procedure was then applied to a 
map calculated using the amplitudes from the intact structure 
and phases from the partial model. The skeletonization param- 
eters were identical to those listed above. The weighted phase 
error over 36 cycles o f  refinement is shown in the figure 
(squares). In a third experiment the Fobs, acalc starting map 
described in the previous experiment was subjected to the 
s tandard solvent-flattening protocol. Envelopes were calculated 
using Leslie's reciprocal-space adapta t ion o f  Wang 's  algorithm 
with the solvent content  set at 60% [using the formula volume 
(/~3) = 1.3 x molecular weight (D), the fraction of  solvent in the 
unit cell was calculated to be 65%]. The envelope was recalcu- 
lated every two cycles. The weighted phase error over 36 cycles 
of  solvent flattening is shown in the figure (circles). Very similar 
results were obtained when envelopes were calculated using a 
solvent content  o f  55%. For  clarity, every eighth data  point is 
represented by a symbol in the figure. 

Table 1. Skeletonization starting with molecular- 
replacement model 

The table shows the course of skeletonization during the first three cycles of 
refinement (Fig. 2, squares) of the phases from the molecular-replacement 
model. The skeletonization procedure may be divided into three stages. In 
the first stage, nodes are placed at all grid points above minden. In this case  
minden was i.2 standard deviations above the mean, and nodes were placed 
at approximately 20000 (column 2) of the 200000 grid points of the map. In 
the second stage, nodes are considered in order of increasing density and are 
removed unless this would disrupt the connectivity of the chain. The tips of 
the skeleton are protected if they are above epden, here 2.0 standard 
deviations above the mean. Nodes above maxden, here 2.5 standard 
deviations above the mean, are also not removed. This thinning s tep  

reduced the number of nodes roughly threefold (column 3). In the final step,  
small graphs containing less than mingraph (here 15) nodes are removed. 
Approximately 100 nodes were removed in this pruning step (column 4). A 
convenient measure of the connectivity of the final skeleton is the fraction 
of remaining nodes which are in the largest graph. Using this measure, the  

connectivity of the skeletons increased from 64 in the first cycle to 98.5% in 
the third cycle (column 5). 

Number of nodes 
Cycle Start After thinning After pruning Connectivity 

1 20121 6042 5921 64 
2 20881 8105 7978 98 
3 20829 8863 8762 98.5 

approximately 27 ° (Wilson & Agard, 1993); thus the 
new algorithm is considerably more accurate than 
the algorithm used previously. 

Application of  PRISM to a molecular-replacement 
test case 

The iterative skeletonization procedure was applied 
to a challenging molecular-replacement (MR) test 
case using a starting model containing only ] of the 
atoms in the native protein. The N-terminal domain 
of apolipoprotein E is an elongated four-helix bundle 
of 144 residues and 1172 non-H atoms (Wilson et al., 
1991). The starting model was generated by trun- 
cating the four-helix bundle and removing all side 
chains beyond the C o , leaving 85 residues and 421 
atoms. A similar short polyalanine four-helix bundle 
was used originally in an attempt to solve the struc- 
ture of apolipoprotein E through molecular 
replacement (Wilson et al., 1991). A starting map 
was calculated using amplitudes from the intact pro- 
tein and phases from the truncated MR model. The 
map was then subjected to 36 cycles of the iterative 
skeletonization procedure. The weighted phase error 
dropped from an initial value of 47.6 ° to 21.0 ° after 
36 cycles (Fig. 2, squares). Comparison with the 
results of skeletonizing a perfect map (Fig. 2, tri- 
angles) shows that the final error is close to the limit 
set by the intrinsic errors of the skeletonization 
procedure. 

The details of skeletonization during the first three 
cycles of refinement are described in Table 1. The 
constraints of chain connectivity and linearity 
imposed on the density during the skeletonization 
procedure effectively reduce the number of param- 
eters from the number of grid points in the map (as 
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(a) 

(b) 
Fig. 3. Comparison of the final skeleton to the starting molecular- 

replacement model and to the intact structure. The S K E L E T O N  
program optionally outputs the coordinates of the skeleton 
generated from the input map. The coordinates of the skeleton 
generated in the last cycle of the molecular-replacement test case 
(Fig. 2, squares) was converted to an I N S I G H T  user file with 
the program PDB2SKEL (available from the authors). (a) is a 
superposition of the final skeleton (thin lines) and the starting 
model (thick lines). Although skeletons obtained when diagonal 
edges are permitted are slightly more aesthetically pleasing, this 
did not improve the performance of the method. The skeleton in 
the region omitted from the starting model (the lower half of the 
figure) almost perfectly follows the coordinates of intact apoli- 
poprotein E, as shown in greater detail in (b) (thin lines, 
skeleton; thick lines, I LPE). 

in conventional density-modification methods) to the 
number of nodes in the skeleton. 

Fig. 3(a) shows a portion of the final skeleton 
generated after 36 cycles of iterative skeletonization 
starting with the molecular-replacement model (Fig. 
2, squares). The coordinates of the starting model are 
also shown for comparison. The half of the four- 
helix bundle truncated in the starting model is 
regenerated in the skeleton as are most of the missing 
side chains. A more detailed view of the final skele- 
ton in a region omitted in the starting model is 
shown in Fig. 3(b). The true solution - the coordi- 
nates of apolipoprotein E - is also shown. The 
skeleton accurately follows both the helical main- 
chain and the side-chain residues of the true struc- 
ture, despite the fact that neither were included in the 
starting model. 

Comparison to solvent flattening 

The most widespread and successful density- 
modification procedure applied to the macromolecu- 
lar diffraction problems is solvent flattening (Wang, 
1985). The relative power of solvent flattening and 
skeletonization for this type of molecular-replace- 
ment problem was investigated by running the stand- 
ard solvent-flattening protocol starting with phases 
from the molecular-replacement model, recalculating 
the envelope every two cycles. As shown in Fig. 2, 
solvent flattening (circles) led to only a slight reduc- 
tion of the phase error, and was dramatically out- 
performed by the iterative skeletonization procedure 
(squares). 

The map produced by the skeletonization 
procedure, the final solvent-flattened map and the 
starting molecular-replacement map are compared in 
Fig. 4. The figure also shows the corresponding 
portion of the correct apoE coordinates. This region 
of the protein was not included in the starting model. 
As expected for such a large deletion, the starting 
map calculated with phases from the molecular- 
replacement model was quite disconnected (Fig. 4a). 
Solvent flattening somewhat reduced the noise in the 
map, but the density was still disconnected and 
essentially uninterpretable (Fig. 4b). However, as 
witnessed by the large drop in phase error shown in 
Fig. 2, the iterative skeletonization procedure led to 
a dramatically improved map (Fig. 4c). The electron 
density in the map produced by the skeletonization 
procedure was readily interpretable, in fact it almost 
perfectly followed the coordinates of the native 
structure. 

Skeletonization restores missing amplitudes 

The constraints of connectivity and linearity imposed 
by the skeletonization procedure effectively couple 
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the structure factors. The improvement in the phases 
during iterative skeletonization (Fig. 2) is a result of 
this coupling. The interactions among structure 
factors are potentially strong enough to restore not 
only missing phase information but also a limited 
amount of missing amplitude information. 

As described in the methods section, the skele- 
tonization algorithm requires several user-defined 
parameters. The optimal values of these parameters 
may vary from map to map. An objective criteria is 
needed to determine the optimal values of the 
parameters for each individual problem and in gen- 
eral to follow the progress of the phase refinement. 
In test cases, the crystallographic R factor (ZlFobs -- 
F¢atcl/Y-Fobs) was found to correlate poorly with the 
phase error. This is not surprising since at the limit 
of no density modification an R factor of 0.0 would 
be obtained (the Fobs'S are used in each round of map 
calculation) independent of actual phase error. 

- 

(o) 

To investigate the possible use of a 'free R factor' 
(Brfinger, 1992), determined for a fraction of the 
data not included in the map calculation, in assessing 
the progress of phase refinement, a perfect map was 
calculated with about 5% (chosen at random) of the 
reflections initially set to zero. The iterative skele- 
tonization procedure was then applied, and after 
each cycle of density modification the output Fca~c, 
rather than Fobs, was used in the map calculation for 
the 'free' set of reflections. As in Fig. 2, the phase 
error increased steadily over the first five cycles 
because of errors in the skeletonization procedure 
(Fig. 5, squares). The total R factor increased during 
the first cycle of skeletonization, and then dropped 
and ultimately leveled off, correlating poorly with 
the phase error (Fig. 5, triangles). Importantly, the R 
factor for the free set of reflections dropped from 
100% (the Fcat~'s for the free set are 0 prior to density 
modification) at cycle 0 to 23% after the first two 
cycles of skeletonization (Fig. 5, circles). Thus, the 
constraints of connectivity and linearity on the 
density define a complex interaction amongst the 
structure factors that effectively couples the missing 
reflections to the known amplitudes. The missing 
reflections recover from initial values of 0 to near to 
their true values. In contrast to the overall R factor, 
the free R factor rose after the second cycle, 
paralleling the phase error. 

Effect of missing data 

The sensitivity of the skeletonization procedure to 
the completeness of the data set is important both 
because real data sets are seldom 100% complete and 
because use of a free R factor for assessing the 
progress of the procedure necessitates the setting 

~t 

(b) (c) 
Fig. 4. Comparison of the maps produced by skeletonized and solvent flattening to the starting molecular-replacement map. 

Electron-density maps were displayed using the graphics program FRODO. A representative portion of the starting map (a), the map 
after solvent flattening (b), and the map after iterative skeletonization (c) are shown together with the corresponding region of the 
I LPE PDB coordinates. This region was not included in the molecular-replacement starting model. 
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aside of a small fraction of the data. The effect of 
missing diffraction data was tested by randomly 
omitting 5% of the reflections and repeating the 
skeletonization procedure starting with phases from 
the molecular-replacement model. As shown in Fig. 
6 (open circles), omitting data reduced both the rate 
of convergence and the accuracy of the final map, 
but there was still a dramatic drop in phase error. As 
the coupling among the diffraction amplitudes leads 
to partial restoration of missing data (Fig. 5), better 
results might be obtained by using [Fcatc!'S from the 
latest skeleton rather than O's for the missing reflec- 
tions during map calculations after the first cycle. As 
shown in Fig. 6 (closed circles) this is indeed the case. 
Allowing the missing amplitudes to 'float' at the 
value calculated from the latest skeleton improved 
the performance of the method. 

Low-intensity reflections are often missed during 
collection of diffraction data. To investigate the 
effect of missing low-intensity reflections, the 
molecular-replacement test case was repeated after 
omitting the weakest 17% of the reflections. As 
shown in Fig. 6 (triangles), omission of this data did 
not adversely affect the iterative skeletonization pro- 
cedure. The weighted phase error in this case actually 
dropped lower than when all data were included 
(compare triangles to squares), presumably because 
the weighting does not completely compensate for 
the larger phase error associated with low-intensity 

reflections. Thus, a failure to measure a relatively 
large amount of low-intensity data is less disruptive 
to the skeletonization procedure than is a failure to 
collect higher intensity data in even a small section of 
reciprocal space. 

C o r r e l a t i o n  o f  t h e  f r e e  R f a c t o r  w i t h  p h a s e  e r r o r  

The resilience of the skeletonization procedure to the 
omission of a small amount of the diffraction data 
allows the use of a free R factor to monitor the 
progress of phase refinement. The ability of the free 
R factor to track the phase error was investigated for 
the molecular-replacement test case described above. 
An initial map was calculated using phases from the 
molecular-replacement model with 5% of the ampli- 
tudes (the 'free' set) set to zero. The iterative skele- 
tonization procedure was then applied and the free R 
factor was calculated at each cycle. As shown in Fig. 
7(a), there was an almost perfect correlation of the 
free R factor with the phase error. 

The free R factor is thus a powerful tool for 
optimizing the method. As the skeletonization pro- 
cedure is clearly sensitive to the degree of complete- 
ness of the data set, the free set must be as small as 
possible while retaining statistical significance. 

The free R factor was also used to follow the 
progress of solvent flattening. 5% of the amplitudes 
were again set to zero and the solvent-flattening 
procedure described in the legend to Fig. 2 was 

20T / -I 30 
" I 
_ : 

16 26 

12 22 

z 8 18 

$ 
4 + 14 
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0 1 2 3 4 5 
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Fig. 5. Recovery of missing amplitudes during iterative skele- 
tonization. A 'perfect' map was calculated from the apo- 
iipoprotein E PDB coordinates as described in the legend to 
Fig. 1 except that 5% of  the Fourier data were randomly 
omitted. The map was then subjected to the iterative skeletoni- 
zation procedure. The missing reflections were allowed to float 
as described in the text. The figure shows the weighted phase 
error (squares), the R factor for the reflections included in the 
map calculation (triangles) and the free R factor (circles) during 
the first five cycles of  refinement. Cycle 0 corresponds to the 
perfect starting map - the R factor for the reflections included in . 
the map calculation is 0% and the free R factor is 100% [Z(F,,,~ 
- 0)/EF, r.~] since the map has not yet been modified. 
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Fig. 6. lterative skeletonization using incomplete and noisy data. 
The molecular-replacement problem described in Fig. 2 was 
repeated using incomplete error-containing Fourier data. The 
figure describes the results of  omitting 5% of the reflections at 
random (circles), omitting the lowest intensity 17% of  the 
reflections (triangles), and of omitting 5% of the reflections and 
also adding 10% random errors to the remaining reflections 
(diamonds). The results with complete and error-free data (Fig. 
2) are replotted (squares) for comparison. The missing ampli- 
tudes were either replaced by Feast's from the latest skeletonized 
map (diamonds and closed circles) or were set to zero 
throughout the run (triangles and open circles). 
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repeated. The free R factor again correlated well with 
the phase error, dropping in the first five cycles and 
then very slowly increasing (Fig. 7b, circles). In 
contrast, the overall R factor fell continuously 
throughout the 40 cycles of refinement, reaching a 
final value of less than 10% (Fig. 7b, triangles). Not 
surprisingly, the overall R factor is thus a very poor 
measure of the success of solvent flattening. These 
results suggest that a free R factor calculation should 
be included in the standard solvent-flattening pro- 
tocol. 

Optimization of parameters using the free R factor 

The parameters required by the skeletonization 
algorithm are minden, the minimum density for a 
node to be added at a grid point, maxden, the 
density above which nodes will not be removed, 
mingraph, the size of the smallest graph which will 
be retained after skeletonization, and /3 which 
determines the fall-off of density with distance from 
the skeleton in the output map. The molecular- 
replacement test case described above was repeated 
four times; in each run one of the parameters was 
allowed to vary and the others were held fixed. The 
phase error and the free R factor after the fourth 
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(b) 
Fig. 7. Use of the free R factor to monitor (a) skeletonization and 

(b) solvent flattening. Skeletonization and solvent flattening 
were applied to the molecular-replacement problem as described 
in Fig. 2, except that 5% of the reflections were reserved for free 
R factor calculation. Squares, weighted phase error; circles, free 
R factor; triangles, overall R factor. 

cycle of refinement are plotted for each combination 
of parameters in Fig. 8. The correlation between 
phase error and free R factor was reasonable in all 
cases, thus the free R factor appears be an extremely 
useful target function for optimizing parameters in 
real cases (in which the phase error cannot be calcu- 
lated). In some applications it may be useful to 
calculate the initial map with the free reflections set 
to the average values within their respective resolu- 
tion shells instead of to zero. This would provide a 
more accurate initial guess for their true values and 
should result in an improved starting map. 

It is instructive to examine the dependence of the 
skeletonization procedure on the parameter values 
(Fig. 8). The lowest density at which a grid point can 
contribute to the skeleton is set by minden which 
ideally should be well above the background solvent 
density but below the weakest link in the protein 
chain. Too low a value of minden results in a 
completely connected skeleton protruding into the 
solvent region and with many incorrect connections, 
while too large a value leads to omission of parts of 
the protein from the final skeleton. The optimal 
value for minden in the rather diverse problems we 
have studied has been close to 1.2~r above the mean 
density in the map. 

The extent of skeletonization is determined by 
maxden, an upper-density cutoff above which a node 
will not be removed even if it is not required to 
maintain connectivity of the skeleton. Too low a 
value of maxden overly limits the amount of density 
modification, while too large a value leads to the 
amplification of errors in the starting map. In prac- 
tice, the optimal value of maxden has varied from 2.5 
to 3.5~r above the mean. 

The level of noise reduction is set by mingraph, the 
size of the smallest graph retained in the final skele- 
ton. The noise in the map may be reduced by 
removing small disconnected graphs, but with min- 
graph too large, not-yet-connected side chains and 
backbone fragments may be incorrectly pruned. The 
optimal value of mingraph has been found to be 
between 4 and 15 nodes. 

The parameter /3, essentially an anisotropic B 
factor, determines the fall-off in electron density with 
distance from the skeleton. Initially, pseudo atoms 
(corresponding to a /3 of 0) were inserted at each 
point in the skeleton, but much better performance 
was obtained with a non-zero /3. This is probably 
because accurate skeletonization requires a grid 
spacing considerably less (about ~ the diffraction 
limit) than the carbon-carbon bond distance: con- 
verting a linear piece of the skeleton into density by 
placing C atoms at 0.6 A intervals results in much 
too sharp a fall-off in the direction perpendicular to 
the skeleton. At the other extreme, too large a value 
of/3 blurs out the skeleton entirely. 
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Fortunately, the optimal values of the parameters 
have not varied substantially in the quite diverse 
problems we have studied: the optimal values of 
minden, maxden,/3 and mingraph range between 1.0 
and 1.4, 2.5 and 3.5, 6.0 and 10.0, and 4 and 15, 
respectively (minden and maxden are in ~r above the 
mean, /3 is in A 2, and mingraph is in number of 
nodes). 

Use of a solvent envelope 

It is apparent from the above considerations that the 
optimal value of mingraph would probably differ for 
the protein and solvent regions of the asymmetric 
unit. In the solvent region few nodes should be put in 
(high minden) and all noise should be flattened (high 
mingraph), but large values of these parameters 
result in an unacceptable level of errors within the 
protein region. These competing requirements can be 
uncoupled if a reliable molecular envelope is avail- 
able - all grid points outside of the envelope can be 
flattened and the skeletonization procedure applied 
only within the envelope. As expected, the optimal 

value of mingraph decreases with the use of an 
envelope (Fig. 8c, dashed lines). The parameters 
mingraph and maxden are also coupled since the 
average graph size decreases with increasing maxden. 
With the lower mingraph for skeletonization with an 
envelope, the deterioration in performance for 
maxden greater than 2.5 was considerably slowed 
(Fig. 8d, dashed lines). This implies that the most 
damaging errors in the skeletonization protocol are 
in the pruning and not the thinning step. This is 
despite the fact that many more nodes are removed 
during thinning than during pruning (Table 1). 

Effect of errors in the data 

To investigate the effect of random errors in com- 
bination with missing data, 5% of the reflections 
were set to zero and random errors were added to 
the remaining reflections to produce a final R factor 
of 10%. The missing reflections were allowed to float 
at the value calculated from the latest skeleton. The 
skeletonization procedure proved remarkably stable 
to errors in the data (Fig. 6, diamonds). Thus, 
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Fig. 8. (a)-(d) Optimization of  parameters using the free R factor. The skeletonization parameters were optimized by varying each 

parameter independently. For each set of  parameters, the skeletonization procedure was applied to the molecular-replacement 
problem as described in the legend to Fig. 7 except that only four cycles of  refinement were carried out. The phase error (squares) and 
free R factor (circles) after the fourth cycle are shown in the figure (solid lines). All parameters except for that being varied were held 
fixed at the values listed in the legend to Fig. 1. The optimization of  mingraph and maxden was repeated (dashed lines) using a solvent 
calculated after the eighth cycle of  a run with the standard parameter set. Density in the solvent region was flattened prior to 
skeletonization. The basic parameter set for refinement with a solvent envelope was the same as in Fig. 1 except that mingraph was set 
to 6 rather than 15. Minden and maxden are expressed as numbers of  standard deviations above the mean. The units for/3 are A 2. 
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perfect data are not required for the success of the 
skeletonization procedure; large improvements can 
be achieved with incomplete data sets containing 
random noise. 

Dependence of skeletonization on low-resolution data 

We next investigated the sensitivity of the skele- 
tonization procedure to low- and high-resolution 
Fourier data cutoffs. Commonly, the very low 
resolution reflections are not measured in X-ray dif- 
fraction experiments. To simulate this, the 
molecular-replacement test case was repeated with a 
low-resolution cutoff of 15 A. Omission of the low- 
resolution data significantly reduced the performance 
of the skeletonization procedure (Fig. 9, diamonds). 
The requirement for low-resolution data probably 
results from the fact that absolute and not local 
contrast is used to determine the position of the 
nodes in the skeleton and the order in which they are 
considered for removal (see Methods). 

Fortunately, the power of the skeletonization pro- 
cedure can be largely restored through use of a 
solvent envelope which effectively compensates for 
the loss of low-resolution information. A reasonable 
molecular envelope can be rapidly calculated using 
Leslie's reciprocal-space adaption of Wang's 
procedure (Leslie, 1987). However, the envelope 
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Fig. 9. Stability of skeletonization to missing low-resolution data. 
The molecular-replacement test problem (Fig. 2, squares) was 
repeated after omitting all data below 15A resolution 
(diamonds). An envelope was calculated from the map gener- 
ated after 20 cycles and the procedure was repeated beginning 
with the starting map and flattening all density outside of the 
envelope (circles). The refinement procedure was again repeated, 
using the envelope, except that the missing low-resolution 
reflections were allowed to float at the value calculated from the 
latest skeletonized map (triangles). The refinement procedure 
was repeated a final time, using an envelope and including all 
low-resolution data (squares). The parameter set was the same 
as in Fig. 2, except mingraph was changed to 6 when an 
envelope was used. 

calculated using phases from a starting molecular- 
replacement model tends to cut off large portions of 
the missing density and is thus quite poor. A better 
envelope is obtained after the iterative skeletoniza- 
tion procedure during which much of the missing 
structure is regenerated. An envelope was generated 
from the map produced after 20 cycles of skele- 
tonization in the absence of the very low resolution 
data (Fig. 9, diamonds). The iterative skeletonization 
procedure was then repeated starting with phases 
from the molecular-replacement model, adding 
nodes only within the envelope. The envelope was 
recalculated every four cycles. The drop in phase 
error was increased by almost 50% through the use 
of the envelope (Fig. 9, circles). 

As discussed above, the density constraints 
enforced by the skeletonization procedure lead to 
coupling of the structure factors. To determine 
whether this coupling is sufficient to restore missing 
low-resolution data, the previous experiment was 
repeated using IFcalcl's from the latest skeleton 
instead of zeros for the low-resolution reflections 
during calculation of the electron-density maps after 
the first cycle. After 20 cycles of skeletonization, the 
JFea~cl'S for the missing reflections were within 5.2% 
of the true values. Not surprisingly, allowing the 
low-resolution missing reflections to 'float' signifi- 
cantly improved the refinement procedure (Fig. 9, 
triangles). Inclusion of low-resolution reflections pre- 
sumably reduces fluctuations in the density along the 
protein chain from one region of the envelope inter- 
ior to another. The combination of a solvent 
envelope and allowing the missing reflections to float 
restored the skeletonization procedure to nearly its 
power for complete data sets (Fig. 9, compare tri- 
angles and squares). 

Dependence of skeletonization on high-resolution data 

Two effects make the iterative skeletonization pro- 
cedure potentially sensitive to the high-resolution 
limit of the data set. First, the accuracy of the 
skeletonization procedure depends on the resolution 
of the map. The skeletonization algorithm is biased 
towards the shortest path through the density. 
~-Helices present a particularly difficult problem: the 
shortest path through density at high resolution is 
along the helical backbone, but at low resolution 
may be through hydrogen bonds along the helical 
axis. Second, the phase-improvement problem 
becomes more poorly determined with the omission 
of increasing amounts of high-resolution data since 
this significantly reduces the ratio of observations 
(Fourier amplitudes) to parameters (nodes in the 
skeleton). 

To investigate the sensitivity of the iterative skele- 
tonization procedure on the extent of high-resolution 
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data, the experiment described in Fig. 6 was repeated 
using different high-resolution cutoffs. As shown in 
Fig. 10, a dramatic deterioration in performance was 
observed when the high-resolution limit was reduced 
from 2.5 (squares) to 3.0 (circles) to 3.5 A (triangles). 
With a high-resolution cutoff of 3.5 A, the procedure 
failed to improve the phases even slightly. Reducing 
the number of parameters by increasing the grid 
spacing did not improve the performance of the 
procedure at 3.5 A resolution (Fig. 10, open tri- 
angles); the increase in the ratio of data to free 
parameters is presumably offset by an increase in the 
errors during skeletonization. Apolipoprotein E is an 
entirely helical protein and the problem of 'short 
circuiting' down the helix axis is particularly acute; 
the method may be more tolerant to the absence of 
high-resolution data in the case of a B-sheet protein. 

Concluding remarks 

The phase-refinement strategy described here should 
be a useful addition to the arsenal of tools available 
for solving macromolecular structures from diffrac- 
tion data. The powerful constraints of linearity and 
connectivity reduce the multiplicity of solutions to 
the phase problem (Baker et al., 1992). The free R 
factor provides a means to optimize the P R I S M  
method for the particular problem at hand. 

The use of connectivity as a restraint for phase 
refinement was pioneered by Bhat & Blow (1982). In 
their method, a starting model is extended through 
regions of contiguous, well connected high density to 
produce a modified and hopefully improved electron- 
density map. Our approach is similar in concept but 
offers several important advantages. First, the skele- 
tonization procedure is efficient even in the absence 
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Fig. 10. Dependence of skeletonization on high-resolution data. 
The molecular-replacement test problem was repeated with 
high-resolution cutoffs of 2.5 (squares), 3.0 (circles) or 3.5 
(triangles). The grid spacing was either 0.67 (closed symbols) or 
1.0/~, (open symbols). 

of a starting model and enforces the additional 
chemical constraint of chain linearity. Second, one of 
the problems of the earlier approach - scaling the 
modified density to the starting molecular-replace- 
ment model - is resolved by a reciprocal-space 
scaling of the sum of the structure factors from the 
model and the skeletonized map to the observed 
amplitudes. Third, the parameters required for the 
density modification can be optimized using the free 
R factor. Our method appears to have a broader 
radius of convergence since the phases continue to 
improve through 40 cycles of refinement, while con- 
vergence was reached in one or two cycles in the 
applications described in the earlier work. More 
detailed comparisons are not possible since the two 
methods have not been applied to the same test case. 

The P R I S M  method absolutely depends on the 
availability of sufficient phase information, either 
from molecular replacement or isomorphous replace- 
ment, to generate an initial map which contains 
stretches of connected density. There is often a large 
gap between obtaining such a map and being able to 
trace an atomic model through the density. The 
apparent very large radius of convergence of the 
P R I S M  iterative skeletonization procedure promises 
to make it a powerful method for improving an 
otherwise uninterpretable map to a point at which it 
may be readily interpreted. 
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